Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semi-supervised Neural Chord Estimation Based on a Variational Autoencoder with Latent Chord Labels and Features (2005.07091v2)

Published 14 May 2020 in cs.SD, cs.LG, and eess.AS

Abstract: This paper describes a statistically-principled semi-supervised method of automatic chord estimation (ACE) that can make effective use of music signals regardless of the availability of chord annotations. The typical approach to ACE is to train a deep classification model (neural chord estimator) in a supervised manner by using only annotated music signals. In this discriminative approach, prior knowledge about chord label sequences (model output) has scarcely been taken into account. In contrast, we propose a unified generative and discriminative approach in the framework of amortized variational inference. More specifically, we formulate a deep generative model that represents the generative process of chroma vectors (observed variables) from discrete labels and continuous features (latent variables), which are assumed to follow a Markov model favoring self-transitions and a standard Gaussian distribution, respectively. Given chroma vectors as observed data, the posterior distributions of the latent labels and features are computed approximately by using deep classification and recognition models, respectively. These three models form a variational autoencoder and can be trained jointly in a semi-supervised manner. The experimental results show that the regularization of the classification model based on the Markov prior of chord labels and the generative model of chroma vectors improved the performance of ACE even under the supervised condition. The semi-supervised learning using additional non-annotated data can further improve the performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.