Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Riemannian multigrid line search for low-rank problems (2005.06976v2)

Published 14 May 2020 in math.NA and cs.NA

Abstract: Large-scale optimization problems arising from the discretization of problems involving PDEs sometimes admit solutions that can be well approximated by low-rank matrices. In this paper, we will exploit this low-rank approximation property by solving the optimization problem directly over the set of low-rank matrices. In particular, we introduce a new multilevel algorithm, where the optimization variable is constrained to the Riemannian manifold of fixed-rank matrices. In contrast to most other multilevel algorithms where the rank is chosen adaptively on each level in order to control the perturbation due to the low-rank truncation, we can keep the ranks (and thus the computational complexity) fixed throughout the iterations. Furthermore, classical implementations of line searches based on Wolfe conditions enable computing a solution where the numerical accuracy is limited to about the square root of the machine epsilon. Here, we propose an extension to Riemannian manifolds of the line search of Hager and Zhang, which uses approximate Wolfe conditions that enable computing a solution on the order of the machine epsilon. Numerical experiments demonstrate the computational efficiency of the proposed framework.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.