Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mitigating Gender Bias in Machine Learning Data Sets (2005.06898v2)

Published 14 May 2020 in cs.CL and cs.LG

Abstract: Artificial Intelligence has the capacity to amplify and perpetuate societal biases and presents profound ethical implications for society. Gender bias has been identified in the context of employment advertising and recruitment tools, due to their reliance on underlying language processing and recommendation algorithms. Attempts to address such issues have involved testing learned associations, integrating concepts of fairness to machine learning and performing more rigorous analysis of training data. Mitigating bias when algorithms are trained on textual data is particularly challenging given the complex way gender ideology is embedded in language. This paper proposes a framework for the identification of gender bias in training data for machine learning.The work draws upon gender theory and sociolinguistics to systematically indicate levels of bias in textual training data and associated neural word embedding models, thus highlighting pathways for both removing bias from training data and critically assessing its impact.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.