Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Do Saliency Models Detect Odd-One-Out Targets? New Datasets and Evaluations (2005.06583v3)

Published 13 May 2020 in cs.CV

Abstract: Recent advances in the field of saliency have concentrated on fixation prediction, with benchmarks reaching saturation. However, there is an extensive body of works in psychology and neuroscience that describe aspects of human visual attention that might not be adequately captured by current approaches. Here, we investigate singleton detection, which can be thought of as a canonical example of salience. We introduce two novel datasets, one with psychophysical patterns and one with natural odd-one-out stimuli. Using these datasets we demonstrate through extensive experimentation that nearly all saliency algorithms do not adequately respond to singleton targets in synthetic and natural images. Furthermore, we investigate the effect of training state-of-the-art CNN-based saliency models on these types of stimuli and conclude that the additional training data does not lead to a significant improvement of their ability to find odd-one-out targets. Datasets are available at http://data.nvision2.eecs.yorku.ca/P3O3/.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube