Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

3D Face Anti-spoofing with Factorized Bilinear Coding (2005.06514v3)

Published 12 May 2020 in cs.CV and eess.IV

Abstract: We have witnessed rapid advances in both face presentation attack models and presentation attack detection (PAD) in recent years. When compared with widely studied 2D face presentation attacks, 3D face spoofing attacks are more challenging because face recognition systems are more easily confused by the 3D characteristics of materials similar to real faces. In this work, we tackle the problem of detecting these realistic 3D face presentation attacks, and propose a novel anti-spoofing method from the perspective of fine-grained classification. Our method, based on factorized bilinear coding of multiple color channels (namely MC_FBC), targets at learning subtle fine-grained differences between real and fake images. By extracting discriminative and fusing complementary information from RGB and YCbCr spaces, we have developed a principled solution to 3D face spoofing detection. A large-scale wax figure face database (WFFD) with both images and videos has also been collected as super-realistic attacks to facilitate the study of 3D face presentation attack detection. Extensive experimental results show that our proposed method achieves the state-of-the-art performance on both our own WFFD and other face spoofing databases under various intra-database and inter-database testing scenarios.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.