Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FaR-GAN for One-Shot Face Reenactment (2005.06402v1)

Published 13 May 2020 in cs.CV

Abstract: Animating a static face image with target facial expressions and movements is important in the area of image editing and movie production. This face reenactment process is challenging due to the complex geometry and movement of human faces. Previous work usually requires a large set of images from the same person to model the appearance. In this paper, we present a one-shot face reenactment model, FaR-GAN, that takes only one face image of any given source identity and a target expression as input, and then produces a face image of the same source identity but with the target expression. The proposed method makes no assumptions about the source identity, facial expression, head pose, or even image background. We evaluate our method on the VoxCeleb1 dataset and show that our method is able to generate a higher quality face image than the compared methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.