Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Hate Speech Detection at Large via Deep Generative Modeling (2005.06370v1)

Published 13 May 2020 in cs.CL, cs.IR, and cs.LG

Abstract: Hate speech detection is a critical problem in social media platforms, being often accused for enabling the spread of hatred and igniting physical violence. Hate speech detection requires overwhelming resources including high-performance computing for online posts and tweets monitoring as well as thousands of human experts for daily screening of suspected posts or tweets. Recently, Deep Learning (DL)-based solutions have been proposed for automatic detection of hate speech, using modest-sized training datasets of few thousands of hate speech sequences. While these methods perform well on the specific datasets, their ability to detect new hate speech sequences is limited and has not been investigated. Being a data-driven approach, it is well known that DL surpasses other methods whenever a scale-up in train dataset size and diversity is achieved. Therefore, we first present a dataset of 1 million realistic hate and non-hate sequences, produced by a deep generative LLM. We further utilize the generated dataset to train a well-studied DL-based hate speech detector, and demonstrate consistent and significant performance improvements across five public hate speech datasets. Therefore, the proposed solution enables high sensitivity detection of a very large variety of hate speech sequences, paving the way to a fully automatic solution.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.