Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Context Learning for Bone Shadow Exclusion in CheXNet Accuracy Improvement (2005.06189v1)

Published 13 May 2020 in eess.IV and cs.CV

Abstract: Chest X-ray examination plays an important role in lung disease detection. The more accuracy of this task, the more experienced radiologists are required. After ChestX-ray14 dataset containing over 100,000 frontal-view X-ray images of 14 diseases was released, several models were proposed with high accuracy. In this paper, we develop a work flow for lung disease diagnosis in chest X-ray images, which can improve the average AUROC of the state-of-the-art model from 0.8414 to 0.8445. We apply image preprocessing steps before feeding to the 14 diseases detection model. Our project includes three models: the first one is DenseNet-121 to predict whether a processed image has a better result, a convolutional auto-encoder model for bone shadow exclusion is the second one, and the last is the original CheXNet.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.