Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Attribute-guided Feature Extraction and Augmentation Robust Learning for Vehicle Re-identification (2005.06184v1)

Published 13 May 2020 in cs.CV

Abstract: Vehicle re-identification is one of the core technologies of intelligent transportation systems and smart cities, but large intra-class diversity and inter-class similarity poses great challenges for existing method. In this paper, we propose a multi-guided learning approach which utilizing the information of attributes and meanwhile introducing two novel random augments to improve the robustness during training. What's more, we propose an attribute constraint method and group re-ranking strategy to refine matching results. Our method achieves mAP of 66.83% and rank-1 accuracy 76.05% in the CVPR 2020 AI City Challenge.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.