Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Scheduling of a Residential Microgrid via Monte-Carlo Tree Search and a Learned Model (2005.06161v3)

Published 13 May 2020 in eess.SY and cs.SY

Abstract: The uncertainty of distributed renewable energy brings significant challenges to economic operation of microgrids. Conventional online optimization approaches require a forecast model. However, accurately forecasting the renewable power generations is still a tough task. To achieve online scheduling of a residential microgrid (RM) that does not need a forecast model to predict the future PV/wind and load power sequences, this paper investigates the usage of reinforcement learning (RL) approach to tackle this challenge. Specifically, based on the recent development of Model-Based Reinforcement Learning, MuZero, we investigate its application to the RM scheduling problem. To accommodate the characteristics of the RM scheduling application, a optimization framework that combines the modelbased RL agent with the mathematical optimization technique is designed, and long short-term memory (LSTM) units are adopted to extract features from the past renewable generation and load sequences. At each time step, the optimal decision is obtained by conducting Monte-Carlo tree search (MCTS) with a learned model and solving an optimal power flow sub-problem. In this way, this approach can sequentially make operational decisions online without relying on a forecast model. The numerical simulation results demonstrate the effectiveness of the proposed algorithm.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)