Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Occlusion-Adaptive Deep Network for Robust Facial Expression Recognition (2005.06040v1)

Published 12 May 2020 in cs.CV

Abstract: Recognizing the expressions of partially occluded faces is a challenging computer vision problem. Previous expression recognition methods, either overlooked this issue or resolved it using extreme assumptions. Motivated by the fact that the human visual system is adept at ignoring the occlusion and focus on non-occluded facial areas, we propose a landmark-guided attention branch to find and discard corrupted features from occluded regions so that they are not used for recognition. An attention map is first generated to indicate if a specific facial part is occluded and guide our model to attend to non-occluded regions. To further improve robustness, we propose a facial region branch to partition the feature maps into non-overlapping facial blocks and task each block to predict the expression independently. This results in more diverse and discriminative features, enabling the expression recognition system to recover even though the face is partially occluded. Depending on the synergistic effects of the two branches, our occlusion-adaptive deep network significantly outperforms state-of-the-art methods on two challenging in-the-wild benchmark datasets and three real-world occluded expression datasets.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.