Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Upper Bounds on the Generalization Error of Private Algorithms for Discrete Data (2005.05889v3)

Published 12 May 2020 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: In this work, we study the generalization capability of algorithms from an information-theoretic perspective. It has been shown that the expected generalization error of an algorithm is bounded from above by a function of the relative entropy between the conditional probability distribution of the algorithm's output hypothesis, given the dataset with which it was trained, and its marginal probability distribution. We build upon this fact and introduce a mathematical formulation to obtain upper bounds on this relative entropy. Assuming that the data is discrete, we then develop a strategy using this formulation, based on the method of types and typicality, to find explicit upper bounds on the generalization error of stable algorithms, i.e., algorithms that produce similar output hypotheses given similar input datasets. In particular, we show the bounds obtained with this strategy for the case of $\epsilon$-DP and $\mu$-GDP algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.