Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Latent Fingerprint Registration via Matching Densely Sampled Points (2005.05878v2)

Published 12 May 2020 in cs.CV

Abstract: Latent fingerprint matching is a very important but unsolved problem. As a key step of fingerprint matching, fingerprint registration has a great impact on the recognition performance. Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae, and hence will certainly fail when there are no sufficient number of extracted minutiae due to small fingerprint area or poor image quality. Minutiae extraction has become the bottleneck of latent fingerprint registration. In this paper, we propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints through a dense fingerprint patch alignment and matching procedure. Given a pair of fingerprints to match, we bypass the minutiae extraction step and take uniformly sampled points as key points. Then the proposed patch alignment and matching algorithm compares all pairs of sampling points and produces their similarities along with alignment parameters. Finally, a set of consistent correspondences are found by spectral clustering. Extensive experiments on NIST27 database and MOLF database show that the proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.