Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Counting Distinct Patterns in Internal Dictionary Matching (2005.05681v1)

Published 12 May 2020 in cs.DS

Abstract: We consider the problem of preprocessing a text $T$ of length $n$ and a dictionary $\mathcal{D}$ in order to be able to efficiently answer queries $CountDistinct(i,j)$, that is, given $i$ and $j$ return the number of patterns from $\mathcal{D}$ that occur in the fragment $T[i \mathinner{.\,.} j]$. The dictionary is internal in the sense that each pattern in $\mathcal{D}$ is given as a fragment of $T$. This way, the dictionary takes space proportional to the number of patterns $d=|\mathcal{D}|$ rather than their total length, which could be $\Theta(n\cdot d)$. An $\tilde{\mathcal{O}}(n+d)$-size data structure that answers $CountDistinct(i,j)$ queries $\mathcal{O}(\log n)$-approximately in $\tilde{\mathcal{O}}(1)$ time was recently proposed in a work that introduced internal dictionary matching [ISAAC 2019]. Here we present an $\tilde{\mathcal{O}}(n+d)$-size data structure that answers $CountDistinct(i,j)$ queries $2$-approximately in $\tilde{\mathcal{O}}(1)$ time. Using range queries, for any $m$, we give an $\tilde{\mathcal{O}}(\min(nd/m,n2/m2)+d)$-size data structure that answers $CountDistinct(i,j)$ queries exactly in $\tilde{\mathcal{O}}(m)$ time. We also consider the special case when the dictionary consists of all square factors of the string. We design an $\mathcal{O}(n \log2 n)$-size data structure that allows us to count distinct squares in a text fragment $T[i \mathinner{.\,.} j]$ in $\mathcal{O}(\log n)$ time.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.