Papers
Topics
Authors
Recent
2000 character limit reached

Infinitely Repeated Quantum Games and Strategic Efficiency (2005.05588v3)

Published 12 May 2020 in quant-ph and cs.GT

Abstract: Repeated quantum game theory addresses long term relations among players who choose quantum strategies. In the conventional quantum game theory, single round quantum games or at most finitely repeated games have been widely studied, however less is known for infinitely repeated quantum games. Investigating infinitely repeated games is crucial since finitely repeated games do not much differ from single round games. In this work we establish the concept of general repeated quantum games and show the Quantum Folk Theorem, which claims that by iterating a game one can find an equilibrium strategy of the game and receive reward that is not obtained by a Nash equilibrium of the corresponding single round quantum game. A significant difference between repeated quantum prisoner's dilemma and repeated classical prisoner's dilemma is that the classical Pareto optimal solution is not always an equilibrium of the repeated quantum game when entanglement is sufficiently strong. When entanglement is sufficiently strong and reward is small, mutual cooperation cannot be an equilibrium of the repeated quantum game. In addition we present several concrete equilibrium strategies of the repeated quantum prisoner's dilemma.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.