Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Computable Phenotypes of Patient Acuity in the Intensive Care Unit (2005.05163v2)

Published 27 Apr 2020 in q-bio.QM, cs.LG, and stat.ML

Abstract: Continuous monitoring and patient acuity assessments are key aspects of Intensive Care Unit (ICU) practice, but both are limited by time constraints imposed on healthcare providers. Moreover, anticipating clinical trajectories remains imprecise. The objectives of this study are to (1) develop an electronic phenotype of acuity using automated variable retrieval within the electronic health records and (2) describe transitions between acuity states that illustrate the clinical trajectories of ICU patients. We gathered two single-center, longitudinal electronic health record datasets for 51,372 adult ICU patients admitted to the University of Florida Health (UFH) Gainesville (GNV) and Jacksonville (JAX). We developed algorithms to quantify acuity status at four-hour intervals for each ICU admission and identify acuity phenotypes using continuous acuity status and k-means clustering approach. 51,073 admissions for 38,749 patients in the UFH GNV dataset and 22,219 admissions for 12,623 patients in the UFH JAX dataset had at least one ICU stay lasting more than four hours. There were three phenotypes: persistently stable, persistently unstable, and transitioning from unstable to stable. For stable patients, approximately 0.7%-1.7% would transition to unstable, 0.02%-0.1% would expire, 1.2%-3.4% would be discharged, and the remaining 96%-97% would remain stable in the ICU every four hours. For unstable patients, approximately 6%-10% would transition to stable, 0.4%-0.5% would expire, and the remaining 89%-93% would remain unstable in the ICU in the next four hours. We developed phenotyping algorithms for patient acuity status every four hours while admitted to the ICU. This approach may be useful in developing prognostic and clinical decision-support tools to aid patients, caregivers, and providers in shared decision-making processes regarding escalation of care and patient values.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.