Papers
Topics
Authors
Recent
2000 character limit reached

Scope Head for Accurate Localization in Object Detection (2005.04854v2)

Published 11 May 2020 in cs.CV

Abstract: Existing anchor-based and anchor-free object detectors in multi-stage or one-stage pipelines have achieved very promising detection performance. However, they still encounter the design difficulty in hand-crafted 2D anchor definition and the learning complexity in 1D direct location regression. To tackle these issues, in this paper, we propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship. This approach quantizes the prediction space and employs a coarse-to-fine strategy for localization. It achieves superior flexibility as in the regression based anchor-free methods, while produces more precise prediction. Besides, an inherit anchor selection score is learned to indicate the localization quality of the detection result, and we propose to better represent the confidence of a detection box by combining the category-classification score and the anchor-selection score. With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.