Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cognitive-driven convolutional beamforming using EEG-based auditory attention decoding (2005.04669v1)

Published 10 May 2020 in cs.SD, eess.AS, and eess.SP

Abstract: The performance of speech enhancement algorithms in a multi-speaker scenario depends on correctly identifying the target speaker to be enhanced. Auditory attention decoding (AAD) methods allow to identify the target speaker which the listener is attending to from single-trial EEG recordings. Aiming at enhancing the target speaker and suppressing interfering speakers, reverberation and ambient noise, in this paper we propose a cognitive-driven multi-microphone speech enhancement system, which combines a neural-network-based mask estimator, weighted minimum power distortionless response convolutional beamformers and AAD. To control the suppression of the interfering speaker, we also propose an extension incorporating an interference suppression constraint. The experimental results show that the proposed system outperforms the state-of-the-art cognitive-driven speech enhancement systems in challenging reverberant and noisy conditions.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.