Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reinforcement Learning based Design of Linear Fixed Structure Controllers (2005.04537v1)

Published 10 May 2020 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: Reinforcement learning has been successfully applied to the problem of tuning PID controllers in several applications. The existing methods often utilize function approximation, such as neural networks, to update the controller parameters at each time-step of the underlying process. In this work, we present a simple finite-difference approach, based on random search, to tuning linear fixed-structure controllers. For clarity and simplicity, we focus on PID controllers. Our algorithm operates on the entire closed-loop step response of the system and iteratively improves the PID gains towards a desired closed-loop response. This allows for embedding stability requirements into the reward function without any modeling procedures.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.