Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improved Throughput for All-or-Nothing Multicommodity Flows with Arbitrary Demands (2005.04533v7)

Published 10 May 2020 in cs.DS

Abstract: Throughput is a main performance objective in communication networks. This paper considers a fundamental maximum throughput routing problem -- the all-or-nothing multicommodity flow (ANF) problem -- in arbitrary directed graphs and in the practically relevant but challenging setting where demands can be (much) larger than the edge capacities. Hence, in addition to assigning requests to valid flows for each routed commodity, an admission control mechanism is required which prevents overloading the network when routing commodities. We make several contributions. On the theoretical side we obtain substantially improved bi-criteria approximation algorithms for this NP-hard problem. We present two non-trivial linear programming relaxations and show how to convert their fractional solutions into integer solutions via randomized rounding. One is an exponential-size formulation (solvable in polynomial time using a separation oracle) that considers a "packing" view and allows a more flexible approach, while the other is a compact (polynomial-size) edge-flow formulation that allows for easy solving via standard LP solvers. We obtain a polynomial-time randomized algorithm that yields an arbitrarily good approximation on the weighted throughput, while violating the edge capacity constraints by only a small multiplicative factor. We also describe a deterministic rounding algorithm by derandomization, using the method of pessimistic estimators. We complement our theoretical results with a proof of concept empirical evaluation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.