Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

In-memory eigenvector computation in time O(1) (2005.04531v1)

Published 9 May 2020 in cs.CC, cs.ET, cs.NA, and math.NA

Abstract: In-memory computing with crosspoint resistive memory arrays has gained enormous attention to accelerate the matrix-vector multiplication in the computation of data-centric applications. By combining a crosspoint array and feedback amplifiers, it is possible to compute matrix eigenvectors in one step without algorithmic iterations. In this work, time complexity of the eigenvector computation is investigated, based on the feedback analysis of the crosspoint circuit. The results show that the computing time of the circuit is determined by the mismatch degree of the eigenvalues implemented in the circuit, which controls the rising speed of output voltages. For a dataset of random matrices, the time for computing the dominant eigenvector in the circuit is constant for various matrix sizes, namely the time complexity is O(1). The O(1) time complexity is also supported by simulations of PageRank of real-world datasets. This work paves the way for fast, energy-efficient accelerators for eigenvector computation in a wide range of practical applications.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.