Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Time complexity of in-memory solution of linear systems (2005.04530v1)

Published 9 May 2020 in cs.CC, cs.ET, cs.NA, and math.NA

Abstract: In-memory computing with crosspoint resistive memory arrays has been shown to accelerate data-centric computations such as the training and inference of deep neural networks, thanks to the high parallelism endowed by physical rules in the electrical circuits. By connecting crosspoint arrays with negative feedback amplifiers, it is possible to solve linear algebraic problems such as linear systems and matrix eigenvectors in just one step. Based on the theory of feedback circuits, we study the dynamics of the solution of linear systems within a memory array, showing that the time complexity of the solution is free of any direct dependence on the problem size N, rather it is governed by the minimal eigenvalue of an associated matrix of the coefficient matrix. We show that, when the linear system is modeled by a covariance matrix, the time complexity is O(logN) or O(1). In the case of sparse positive-definite linear systems, the time complexity is solely determined by the minimal eigenvalue of the coefficient matrix. These results demonstrate the high speed of the circuit for solving linear systems in a wide range of applications, thus supporting in-memory computing as a strong candidate for future big data and machine learning accelerators.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube