Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

It's Morphin' Time! Combating Linguistic Discrimination with Inflectional Perturbations (2005.04364v1)

Published 9 May 2020 in cs.CL, cs.AI, cs.CY, cs.LG, and cs.NE

Abstract: Training on only perfect Standard English corpora predisposes pre-trained neural networks to discriminate against minorities from non-standard linguistic backgrounds (e.g., African American Vernacular English, Colloquial Singapore English, etc.). We perturb the inflectional morphology of words to craft plausible and semantically similar adversarial examples that expose these biases in popular NLP models, e.g., BERT and Transformer, and show that adversarially fine-tuning them for a single epoch significantly improves robustness without sacrificing performance on clean data.

Citations (99)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.