Graph Consistency as a Graduated Property: Consistency-Sustaining and -Improving Graph Transformations (2005.04162v2)
Abstract: Where graphs are used for modelling and specifying systems, consistency is an important concern. To be a valid model of a system, the graph structure must satisfy a number of constraints. To date, consistency has primarily been viewed as a binary property: a graph either is or is not consistent with respect to a set of graph constraints. This has enabled the definition of notions such as constraint-preserving and constraint-guaranteeing graph transformations. Many practical applications - for example model repair or evolutionary search - implicitly assume a more graduated notion of consistency, but without an explicit formalisation only limited analysis of these applications is possible. In this paper, we introduce an explicit notion of consistency as a graduated property, depending on the number of constraint violations in a graph. We present two new characterisations of transformations (and transformation rules) enabling reasoning about the gradual introduction of consistency: while consistency-sustaining transformations do not decrease the consistency level, consistency-improving transformations strictly reduce the number of constraint violations. We show how these new definitions refine the existing concepts of constraint-preserving and constraint-guaranteeing transformations. To support a static analysis based on our characterisations, we present criteria for deciding which form of consistency ensuring transformations is induced by the application of a transformation rule. We illustrate our contributions in the context of an example from search-based model engineering.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.