Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sentiment Analysis Using Simplified Long Short-term Memory Recurrent Neural Networks (2005.03993v1)

Published 8 May 2020 in cs.CL, cs.LG, and stat.ML

Abstract: LSTM or Long Short Term Memory Networks is a specific type of Recurrent Neural Network (RNN) that is very effective in dealing with long sequence data and learning long term dependencies. In this work, we perform sentiment analysis on a GOP Debate Twitter dataset. To speed up training and reduce the computational cost and time, six different parameter reduced slim versions of the LSTM model (slim LSTM) are proposed. We evaluate two of these models on the dataset. The performance of these two LSTM models along with the standard LSTM model is compared. The effect of Bidirectional LSTM Layers is also studied. The work also consists of a study to choose the best architecture, apart from establishing the best set of hyper parameters for different LSTM Models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube