Papers
Topics
Authors
Recent
2000 character limit reached

Exploiting $\mathbf{c}$-Closure in Kernelization Algorithms for Graph Problems (2005.03986v2)

Published 8 May 2020 in cs.DM

Abstract: A graph is c-closed if every pair of vertices with at least c common neighbors is adjacent. The c-closure of a graph G is the smallest number such that G is c-closed. Fox et al. [ICALP '18] defined c-closure and investigated it in the context of clique enumeration. We show that c-closure can be applied in kernelization algorithms for several classic graph problems. We show that Dominating Set admits a kernel of size kO(c), that Induced Matching admits a kernel with O(c7*k8) vertices, and that Irredundant Set admits a kernel with O(c5/2*k3) vertices. Our kernelization exploits the fact that c-closed graphs have polynomially-bounded Ramsey numbers, as we show.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.