Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neural Spatio-Temporal Beamformer for Target Speech Separation (2005.03889v5)

Published 8 May 2020 in eess.AS and cs.SD

Abstract: Purely neural network (NN) based speech separation and enhancement methods, although can achieve good objective scores, inevitably cause nonlinear speech distortions that are harmful for the automatic speech recognition (ASR). On the other hand, the minimum variance distortionless response (MVDR) beamformer with NN-predicted masks, although can significantly reduce speech distortions, has limited noise reduction capability. In this paper, we propose a multi-tap MVDR beamformer with complex-valued masks for speech separation and enhancement. Compared to the state-of-the-art NN-mask based MVDR beamformer, the multi-tap MVDR beamformer exploits the inter-frame correlation in addition to the inter-microphone correlation that is already utilized in prior arts. Further improvements include the replacement of the real-valued masks with the complex-valued masks and the joint training of the complex-mask NN. The evaluation on our multi-modal multi-channel target speech separation and enhancement platform demonstrates that our proposed multi-tap MVDR beamformer improves both the ASR accuracy and the perceptual speech quality against prior arts.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.