Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimizing Temporal Convolutional Network inference on FPGA-based accelerators (2005.03775v1)

Published 7 May 2020 in eess.SP and cs.AR

Abstract: Convolutional Neural Networks are extensively used in a wide range of applications, commonly including computer vision tasks like image and video classification, recognition, and segmentation. Recent research results demonstrate that multilayer(deep) networks involving mono-dimensional convolutions and dilation can be effectively used in time series and sequences classification and segmentation, as well as in tasks involving sequence modelling. These structures, commonly referred to as Temporal Convolutional Networks (TCNs), have been demonstrated to consistently outperform Recurrent Neural Networks in terms of accuracy and training time [1]. While FPGA-based inference accelerators for classic CNNs are widespread, literature is lacking in a quantitative evaluation of their usability on inference for TCN models. In this paper we present such an evaluation, considering a CNN accelerator with specific features supporting TCN kernels as a reference and a set of state-of-the-art TCNs as a benchmark. Experimental results show that, during TCN execution, operational intensity can be critical for the overall performance. We propose a convolution scheduling based on batch processing that can boost efficiency up to 96% of theoretical peak performance. Overall we can achieve up to 111,8 GOPS/s and power efficiency of 33,9 GOPS/s/W on an Ultrascale+ ZU3EG (up to 10x speedup and 3x power efficiency improvement with respect to pure software implementation).

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.