Emergent Mind

Minority Class Oversampling for Tabular Data with Deep Generative Models

(2005.03773)
Published May 7, 2020 in cs.LG and stat.ML

Abstract

In practice, machine learning experts are often confronted with imbalanced data. Without accounting for the imbalance, common classifiers perform poorly and standard evaluation metrics mislead the practitioners on the model's performance. A common method to treat imbalanced datasets is under- and oversampling. In this process, samples are either removed from the majority class or synthetic samples are added to the minority class. In this paper, we follow up on recent developments in deep learning. We take proposals of deep generative models, including our own, and study the ability of these approaches to provide realistic samples that improve performance on imbalanced classification tasks via oversampling. Across 160K+ experiments, we show that all of the new methods tend to perform better than simple baseline methods such as SMOTE, but require different under- and oversampling ratios to do so. Our experiments show that the way the method of sampling does not affect quality, but runtime varies widely. We also observe that the improvements in terms of performance metric, while shown to be significant when ranking the methods, often are minor in absolute terms, especially compared to the required effort. Furthermore, we notice that a large part of the improvement is due to undersampling, not oversampling. We make our code and testing framework available.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.