Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Reduced Basis Method For Fractional Diffusion Operators II (2005.03574v1)

Published 7 May 2020 in math.NA and cs.NA

Abstract: We present a novel numerical scheme to approximate the solution map $s\mapsto u(s) := \mathcal{L}{-s}f$ to partial differential equations involving fractional elliptic operators. Reinterpreting $\mathcal{L}{-s}$ as interpolation operator allows us to derive an integral representation of $u(s)$ which includes solutions to parametrized reaction-diffusion problems. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. Avoiding further discretization, the integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation $L$ of the operator whose inverse is projected to a low-dimensional space, where explicit diagonalization is feasible. The universal character of the underlying $s$-independent reduced space allows the approximation of $(u(s))_{s\in(0,1)}$ in its entirety. We prove exponential convergence rates and confirm the analysis with a variety of numerical examples. Further improvements are proposed in the second part of this investigation to avoid inversion of $L$. Instead, we directly project the matrix to the reduced space, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube