Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fair Algorithms for Hierarchical Agglomerative Clustering

Published 7 May 2020 in cs.LG and stat.ML | (2005.03197v4)

Abstract: Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples. HAC algorithms are employed in many applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair -- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not discriminate against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. In this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. Through extensive experiments on multiple real-world UCI datasets, we show that our proposed algorithm finds fairer clusterings compared to vanilla HAC as well as other state-of-the-art fair clustering approaches.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.