Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Low-light Image Enhancement with Decoupled Networks (2005.02818v2)

Published 6 May 2020 in eess.IV and cs.CV

Abstract: In this paper, we tackle the problem of enhancing real-world low-light images with significant noise in an unsupervised fashion. Conventional unsupervised learning-based approaches usually tackle the low-light image enhancement problem using an image-to-image translation model. They focus primarily on illumination or contrast enhancement but fail to suppress the noise that ubiquitously exists in images taken under real-world low-light conditions. To address this issue, we explicitly decouple this task into two sub-tasks: illumination enhancement and noise suppression. We propose to learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion. To facilitate the unsupervised training of our model, we construct samples with pseudo labels. Furthermore, we propose an adaptive content loss to suppress real image noise in different regions based on illumination intensity. In addition to conventional benchmark datasets, a new unpaired low-light image enhancement dataset is built and used to thoroughly evaluate the performance of our model. Extensive experiments show that our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Wei Xiong (172 papers)
  2. Ding Liu (52 papers)
  3. Xiaohui Shen (67 papers)
  4. Chen Fang (157 papers)
  5. Jiebo Luo (355 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.