Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Autoencoders for DOA Estimation of Coherent Sources using Imperfect Antenna Array (2005.02728v1)

Published 6 May 2020 in eess.SP, cs.IT, and math.IT

Abstract: In this paper a robust algorithm for DOA estimation of coherent sources in presence of antenna array imperfections is presented. We exploit the current advances of deep learning to overcome two of the most common problems facing the state of the art DOA algorithms (i.e. coherent sources and array imperfections). We propose a deep auto encoder (AE) that is able to correctly resolve coherent sources without the need of spatial smoothing, hence avoiding possible processing overhead and delays. Moreover, we assumed the presence of array imperfections in the received signal model such as mutual coupling, gain/ phase mismatches, and position errors. The deep AE is trained using the covariance matrix of the received signal, where it alleviates the effect of imperfections, and at the same time act as a filters for the coherent sources. The results show significant improvement compared to the methods used in the literature.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.