Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Information-Theoretic Bounds on the Generalization Error and Privacy Leakage in Federated Learning (2005.02503v1)

Published 5 May 2020 in cs.LG, cs.CR, cs.DC, cs.NE, and stat.ML

Abstract: Machine learning algorithms operating on mobile networks can be characterized into three different categories. First is the classical situation in which the end-user devices send their data to a central server where this data is used to train a model. Second is the distributed setting in which each device trains its own model and send its model parameters to a central server where these model parameters are aggregated to create one final model. Third is the federated learning setting in which, at any given time $t$, a certain number of active end users train with their own local data along with feedback provided by the central server and then send their newly estimated model parameters to the central server. The server, then, aggregates these new parameters, updates its own model, and feeds the updated parameters back to all the end users, continuing this process until it converges. The main objective of this work is to provide an information-theoretic framework for all of the aforementioned learning paradigms. Moreover, using the provided framework, we develop upper and lower bounds on the generalization error together with bounds on the privacy leakage in the classical, distributed and federated learning settings. Keywords: Federated Learning, Distributed Learning, Machine Learning, Model Aggregation.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.