Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PolymoRF: Polymorphic Wireless Receivers Through Physical-Layer Deep Learning (2005.02262v1)

Published 5 May 2020 in cs.NI

Abstract: Today's wireless technologies are largely based on inflexible designs, which makes them inefficient and prone to a variety of wireless attacks. To address this key issue, wireless receivers will need to (i) infer on-the-fly the physical-layer parameters currently used by transmitters; and if needed, (ii) change their hardware and software structures to demodulate the incoming waveform. In this paper, we introduce PolymoRF, a deep learning-based polymorphic receiver able to reconfigure itself in real time based on the inferred waveform parameters. Our key technical innovations are (i) a novel embedded deep learning architecture, called RFNet, which enables the solution of key waveform inference problems; (ii) a generalized hardware/software architecture that integrates RFNet with radio components and signal processing. We prototype PolymoRF on a custom software-defined radio platform, and show through extensive over-the-air experiments that (i) RFNet achieves similar accuracy to that of state-of-the-art yet with 52x and 8x latency and hardware reduction; (ii) PolymoRF achieves throughput within 87% of a perfect-knowledge Oracle system, thus demonstrating for the first time that polymorphic receivers are feasible and effective.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.