Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Complexity of $C_k$-coloring in hereditary classes of graphs (2005.01824v2)

Published 4 May 2020 in cs.DS and math.CO

Abstract: For a graph $F$, a graph $G$ is \emph{$F$-free} if it does not contain an induced subgraph isomorphic to $F$. For two graphs $G$ and $H$, an \emph{$H$-coloring} of $G$ is a mapping $f:V(G)\rightarrow V(H)$ such that for every edge $uv\in E(G)$ it holds that $f(u)f(v)\in E(H)$. We are interested in the complexity of the problem $H$-{\sc Coloring}, which asks for the existence of an $H$-coloring of an input graph $G$. In particular, we consider $H$-{\sc Coloring} of $F$-free graphs, where $F$ is a fixed graph and $H$ is an odd cycle of length at least 5. This problem is closely related to the well known open problem of determining the complexity of 3-{\sc Coloring} of $P_t$-free graphs. We show that for every odd $k \geq 5$ the $C_k$-{\sc Coloring} problem, even in the list variant, can be solved in polynomial time in $P_9$-free graphs. The algorithm extends for the case of list version of $C_k$-{\sc Coloring}, where $k$ is an even number of length at least 10. On the other hand, we prove that if some component of $F$ is not a subgraph of a subdividecd claw, then the following problems are NP-complete in $F$-free graphs: a)extension version of $C_k$-{\sc Coloring} for every odd $k \geq 5$, b) list version of $C_k$-{\sc Coloring} for every even $k \geq 6$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.