Papers
Topics
Authors
Recent
2000 character limit reached

LIMEtree: Consistent and Faithful Surrogate Explanations of Multiple Classes (2005.01427v4)

Published 4 May 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Explainable artificial intelligence provides tools to better understand predictive models and their decisions, but many such methods are limited to producing insights with respect to a single class. When generating explanations for several classes, reasoning over them to obtain a comprehensive view may be difficult since they can present competing or contradictory evidence. To address this challenge we introduce the novel paradigm of multi-class explanations. We outline the theory behind such techniques and propose a local surrogate model based on multi-output regression trees -- called LIMEtree -- that offers faithful and consistent explanations of multiple classes for individual predictions while being post-hoc, model-agnostic and data-universal. On top of strong fidelity guarantees, our implementation delivers a range of diverse explanation types, including counterfactual statements favoured in the literature. We evaluate our algorithm with respect to explainability desiderata, through quantitative experiments and via a pilot user study, on image and tabular data classification tasks, comparing it to LIME, which is a state-of-the-art surrogate explainer. Our contributions demonstrate the benefits of multi-class explanations and wide-ranging advantages of our method across a diverse set of scenarios.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 10 likes about this paper.