Papers
Topics
Authors
Recent
2000 character limit reached

Graph Homomorphism Convolution (2005.01214v2)

Published 3 May 2020 in cs.LG, cs.DM, math.CO, and stat.ML

Abstract: In this paper, we study the graph classification problem from the graph homomorphism perspective. We consider the homomorphisms from $F$ to $G$, where $G$ is a graph of interest (e.g. molecules or social networks) and $F$ belongs to some family of graphs (e.g. paths or non-isomorphic trees). We show that graph homomorphism numbers provide a natural invariant (isomorphism invariant and $\mathcal{F}$-invariant) embedding maps which can be used for graph classification. Viewing the expressive power of a graph classifier by the $\mathcal{F}$-indistinguishable concept, we prove the universality property of graph homomorphism vectors in approximating $\mathcal{F}$-invariant functions. In practice, by choosing $\mathcal{F}$ whose elements have bounded tree-width, we show that the homomorphism method is efficient compared with other methods.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.