Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Tensor optimal transport, distance between sets of measures and tensor scaling (2005.00945v2)

Published 2 May 2020 in cs.CV and math.OC

Abstract: We study the optimal transport problem for $d>2$ discrete measures. This is a linear programming problem on $d$-tensors. It gives a way to compute a "distance" between two sets of discrete measures. We introduce an entropic regularization term, which gives rise to a scaling of tensors. We give a variation of the celebrated Sinkhorn scaling algorithm. We show that this algorithm can be viewed as a partial minimization algorithm of a strictly convex function. Under appropriate conditions the rate of convergence is geometric and we estimate the rate. Our results are generalizations of known results for the classical case of two discrete measures.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.