Papers
Topics
Authors
Recent
2000 character limit reached

Dimensions of Diversity in Human Perceptions of Algorithmic Fairness (2005.00808v3)

Published 2 May 2020 in cs.CY and cs.LG

Abstract: A growing number of oversight boards and regulatory bodies seek to monitor and govern algorithms that make decisions about people's lives. Prior work has explored how people believe algorithmic decisions should be made, but there is little understanding of how individual factors like sociodemographics or direct experience with a decision-making scenario may affect their ethical views. We take a step toward filling this gap by exploring how people's perceptions of one aspect of procedural algorithmic fairness (the fairness of using particular features in an algorithmic decision) relate to their (i) demographics (age, education, gender, race, political views) and (ii) personal experiences with the algorithmic decision-making scenario. We find that political views and personal experience with the algorithmic decision context significantly influence perceptions about the fairness of using different features for bail decision-making. Drawing on our results, we discuss the implications for stakeholder engagement and algorithmic oversight including the need to consider multiple dimensions of diversity in composing oversight and regulatory bodies.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.