Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Projection Inpainting Using Partial Convolution for Metal Artifact Reduction (2005.00762v1)

Published 2 May 2020 in cs.CV and eess.IV

Abstract: In computer tomography, due to the presence of metal implants in the patient body, reconstructed images will suffer from metal artifacts. In order to reduce metal artifacts, metals are typically removed in projection images. Therefore, the metal corrupted projection areas need to be inpainted. For deep learning inpainting methods, convolutional neural networks (CNNs) are widely used, for example, the U-Net. However, such CNNs use convolutional filter responses on both valid and corrupted pixel values, resulting in unsatisfactory image quality. In this work, partial convolution is applied for projection inpainting, which only relies on valid pixels values. The U-Net with partial convolution and conventional convolution are compared for metal artifact reduction. Our experiments demonstrate that the U-Net with partial convolution is able to inpaint the metal corrupted areas better than that with conventional convolution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.