Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Broad-Coverage Medical Entity Linking with Semantic Type Prediction and Large-Scale Datasets (2005.00460v4)

Published 1 May 2020 in cs.CL

Abstract: Medical entity linking is the task of identifying and standardizing medical concepts referred to in an unstructured text. Most of the existing methods adopt a three-step approach of (1) detecting mentions, (2) generating a list of candidate concepts, and finally (3) picking the best concept among them. In this paper, we probe into alleviating the problem of overgeneration of candidate concepts in the candidate generation module, the most under-studied component of medical entity linking. For this, we present MedType, a fully modular system that prunes out irrelevant candidate concepts based on the predicted semantic type of an entity mention. We incorporate MedType into five off-the-shelf toolkits for medical entity linking and demonstrate that it consistently improves entity linking performance across several benchmark datasets. To address the dearth of annotated training data for medical entity linking, we present WikiMed and PubMedDS, two large-scale medical entity linking datasets, and demonstrate that pre-training MedType on these datasets further improves entity linking performance. We make our source code and datasets publicly available for medical entity linking research.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.