Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Do Neural Ranking Models Intensify Gender Bias? (2005.00372v3)

Published 1 May 2020 in cs.IR and cs.LG

Abstract: Concerns regarding the footprint of societal biases in information retrieval (IR) systems have been raised in several previous studies. In this work, we examine various recent IR models from the perspective of the degree of gender bias in their retrieval results. To this end, we first provide a bias measurement framework which includes two metrics to quantify the degree of the unbalanced presence of gender-related concepts in a given IR model's ranking list. To examine IR models by means of the framework, we create a dataset of non-gendered queries, selected by human annotators. Applying these queries to the MS MARCO Passage retrieval collection, we then measure the gender bias of a BM25 model and several recent neural ranking models. The results show that while all models are strongly biased toward male, the neural models, and in particular the ones based on contextualized embedding models, significantly intensify gender bias. Our experiments also show an overall increase in the gender bias of neural models when they exploit transfer learning, namely when they use (already biased) pre-trained embeddings.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.