Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Novel Perspective to Zero-shot Learning: Towards an Alignment of Manifold Structures via Semantic Feature Expansion (2004.14795v1)

Published 30 Apr 2020 in cs.CV and cs.LG

Abstract: Zero-shot learning aims at recognizing unseen classes (no training example) with knowledge transferred from seen classes. This is typically achieved by exploiting a semantic feature space shared by both seen and unseen classes, i.e., attribute or word vector, as the bridge. One common practice in zero-shot learning is to train a projection between the visual and semantic feature spaces with labeled seen classes examples. When inferring, this learned projection is applied to unseen classes and recognizes the class labels by some metrics. However, the visual and semantic feature spaces are mutually independent and have quite different manifold structures. Under such a paradigm, most existing methods easily suffer from the domain shift problem and weaken the performance of zero-shot recognition. To address this issue, we propose a novel model called AMS-SFE. It considers the alignment of manifold structures by semantic feature expansion. Specifically, we build upon an autoencoder-based model to expand the semantic features from the visual inputs. Additionally, the expansion is jointly guided by an embedded manifold extracted from the visual feature space of the data. Our model is the first attempt to align both feature spaces by expanding semantic features and derives two benefits: first, we expand some auxiliary features that enhance the semantic feature space; second and more importantly, we implicitly align the manifold structures between the visual and semantic feature spaces; thus, the projection can be better trained and mitigate the domain shift problem. Extensive experiments show significant performance improvement, which verifies the effectiveness of our model.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)