Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparse Hashing for Scalable Approximate Model Counting: Theory and Practice (2004.14692v1)

Published 30 Apr 2020 in cs.DS, cs.LG, and cs.LO

Abstract: Given a CNF formula F on n variables, the problem of model counting or #SAT is to compute the number of satisfying assignments of F . Model counting is a fundamental but hard problem in computer science with varied applications. Recent years have witnessed a surge of effort towards developing efficient algorithmic techniques that combine the classical 2-universal hashing with the remarkable progress in SAT solving over the past decade. These techniques augment the CNF formula F with random XOR constraints and invoke an NP oracle repeatedly on the resultant CNF-XOR formulas. In practice, calls to the NP oracle calls are replaced a SAT solver whose runtime performance is adversely affected by size of XOR constraints. The standard construction of 2-universal hash functions chooses every variable with probability p = 1/2 leading to XOR constraints of size n/2 in expectation. Consequently, the challenge is to design sparse hash functions where variables can be chosen with smaller probability and lead to smaller sized XOR constraints. In this paper, we address this challenge from theoretical and practical perspectives. First, we formalize a relaxation of universal hashing, called concentrated hashing and establish a novel and beautiful connection between concentration measures of these hash functions and isoperimetric inequalities on boolean hypercubes. This allows us to obtain (log m) tight bounds on variance and dispersion index and show that p = O( log(m)/m ) suffices for design of sparse hash functions from {0, 1}n to {0, 1}m. We then use sparse hash functions belonging to this concentrated hash family to develop new approximate counting algorithms. A comprehensive experimental evaluation of our algorithm on 1893 benchmarks demonstrates that usage of sparse hash functions can lead to significant speedups.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.