Papers
Topics
Authors
Recent
2000 character limit reached

Learning nonlinear dynamical systems from a single trajectory (2004.14681v1)

Published 30 Apr 2020 in cs.LG, math.OC, math.ST, stat.ML, and stat.TH

Abstract: We introduce algorithms for learning nonlinear dynamical systems of the form $x_{t+1}=\sigma(\Theta{\star}x_t)+\varepsilon_t$, where $\Theta{\star}$ is a weight matrix, $\sigma$ is a nonlinear link function, and $\varepsilon_t$ is a mean-zero noise process. We give an algorithm that recovers the weight matrix $\Theta{\star}$ from a single trajectory with optimal sample complexity and linear running time. The algorithm succeeds under weaker statistical assumptions than in previous work, and in particular i) does not require a bound on the spectral norm of the weight matrix $\Theta{\star}$ (rather, it depends on a generalization of the spectral radius) and ii) enjoys guarantees for non-strictly-increasing link functions such as the ReLU. Our analysis has two key components: i) we give a general recipe whereby global stability for nonlinear dynamical systems can be used to certify that the state-vector covariance is well-conditioned, and ii) using these tools, we extend well-known algorithms for efficiently learning generalized linear models to the dependent setting.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.