Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generalization Error for Linear Regression under Distributed Learning (2004.14637v2)

Published 30 Apr 2020 in stat.ML, cs.LG, and eess.SP

Abstract: Distributed learning facilitates the scaling-up of data processing by distributing the computational burden over several nodes. Despite the vast interest in distributed learning, generalization performance of such approaches is not well understood. We address this gap by focusing on a linear regression setting. We consider the setting where the unknowns are distributed over a network of nodes. We present an analytical characterization of the dependence of the generalization error on the partitioning of the unknowns over nodes. In particular, for the overparameterized case, our results show that while the error on training data remains in the same range as that of the centralized solution, the generalization error of the distributed solution increases dramatically compared to that of the centralized solution when the number of unknowns estimated at any node is close to the number of observations. We further provide numerical examples to verify our analytical expressions.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube