Papers
Topics
Authors
Recent
2000 character limit reached

Can Your Context-Aware MT System Pass the DiP Benchmark Tests? : Evaluation Benchmarks for Discourse Phenomena in Machine Translation (2004.14607v1)

Published 30 Apr 2020 in cs.CL

Abstract: Despite increasing instances of machine translation (MT) systems including contextual information, the evidence for translation quality improvement is sparse, especially for discourse phenomena. Popular metrics like BLEU are not expressive or sensitive enough to capture quality improvements or drops that are minor in size but significant in perception. We introduce the first of their kind MT benchmark datasets that aim to track and hail improvements across four main discourse phenomena: anaphora, lexical consistency, coherence and readability, and discourse connective translation. We also introduce evaluation methods for these tasks, and evaluate several baseline MT systems on the curated datasets. Surprisingly, we find that existing context-aware models do not improve discourse-related translations consistently across languages and phenomena.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.