Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Reduced-Dimensional Reinforcement Learning Control using Singular Perturbation Approximations (2004.14501v1)

Published 29 Apr 2020 in eess.SY, cs.LG, and cs.SY

Abstract: We present a set of model-free, reduced-dimensional reinforcement learning (RL) based optimal control designs for linear time-invariant singularly perturbed (SP) systems. We first present a state-feedback and output-feedback based RL control design for a generic SP system with unknown state and input matrices. We take advantage of the underlying time-scale separation property of the plant to learn a linear quadratic regulator (LQR) for only its slow dynamics, thereby saving a significant amount of learning time compared to the conventional full-dimensional RL controller. We analyze the sub-optimality of the design using SP approximation theorems and provide sufficient conditions for closed-loop stability. Thereafter, we extend both designs to clustered multi-agent consensus networks, where the SP property reflects through clustering. We develop both centralized and cluster-wise block-decentralized RL controllers for such networks, in reduced dimensions. We demonstrate the details of the implementation of these controllers using simulations of relevant numerical examples and compare them with conventional RL designs to show the computational benefits of our approach.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.