Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Detecting Domain Polarity-Changes of Words in a Sentiment Lexicon (2004.14357v1)

Published 29 Apr 2020 in cs.CL

Abstract: Sentiment lexicons are instrumental for sentiment analysis. One can use a set of sentiment words provided in a sentiment lexicon and a lexicon-based classifier to perform sentiment classification. One major issue with this approach is that many sentiment words are domain dependent. That is, they may be positive in some domains but negative in some others. We refer to this problem as domain polarity-changes of words. Detecting such words and correcting their sentiment for an application domain is very important. In this paper, we propose a graph-based technique to tackle this problem. Experimental results show its effectiveness on multiple real-world datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube